Numerosities of point sets over the real line

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integral point sets over Zn

There are many papers studying properties of point sets in the Euclidean space Em or on integer grids Zm, with pairwise integral or rational distances. In this article we consider the distances or coordinates of the point sets which instead of being integers are elements of Z/Zn, and study the properties of the resulting combinatorial structures.

متن کامل

Integral point sets over I

There are many papers studying properties of point sets in the Euclidean space E or on integer grids Z, with pairwise integral or rational distances. In this article we consider the distances or coordinates of the point sets which instead of being integers are elements of Z/Zn, and study the properties of the resulting combinatorial structures.

متن کامل

Optimal Line Bipartitions of Point Sets

Let S be a set of n points in the plane. We study the following problem: Partition S by a line into two subsets Sa and Sb such that maxff(Sa); f(Sb)g is minimal, where f is any monotone function de ned over 2 . We rst present a solution to the case where the points in S are the vertices of some convex polygon and apply it to some common cases | f(S0) is the perimeter, area, or width of the conv...

متن کامل

A Faster Algorithm for Computing the Link Distance Between Two Point Sets on the Real Line

Let S and T be point sets with |S| ≥ |T | and total cardinality n. A linking between S and T is a matching, L, between the sets where every element of S and T is matched to at least one element of the other set. The link distance is defined as the minimum-cost linking. In this note we consider a special case of the link distance where both point sets lie on the real line and the cost of matchin...

متن کامل

Integral point sets over finite fields

We consider point sets in the affine plane Fq where each Euclidean distance of two points is an element of Fq . These sets are called integral point sets and were originally defined in m-dimensional Euclidean spaces Em. We determine their maximal cardinality I(Fq , 2). For arbitrary commutative rings R instead of Fq or for further restrictions as no three points on a line or no four points on a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2010

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-2010-04919-0